Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Vaccines (Basel) ; 10(12)2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2143787

ABSTRACT

Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread to more than 230 countries and territories worldwide since its outbreak in late 2019. In less than three years, infection by SARS-CoV-2 has resulted in over 600 million cases of COVID-19 and over 6.4 million deaths. Vaccines have been developed with unimaginable speed, and 11 have already been approved by the World Health Organization and given Emergency Use Listing. The administration of several first-generation SARS-CoV-2 vaccines has successfully decelerated the spread of COVID-19 but not stopped it completely. In the ongoing fight against viruses, genetic mutations frequently occur in the viral genome, resulting in a decrease in vaccine-induced antibody neutralization and widespread breakthrough infection. Facing the evolution and uncertainty of SARS-CoV-2 in the future, and the possibility of the spillover of other coronaviruses to humans, the need for vaccines with a broad spectrum of antiviral variants against multiple coronaviruses is recognized. It is imperative to develop a universal coronavirus or pan-coronavirus vaccine or drug to combat the ongoing COVID-19 pandemic as well as to prevent the next coronavirus pandemic. In this review, in addition to summarizing the protective effect of approved vaccines, we systematically summarize current work on the development of vaccines aimed at suppressing multiple SARS-CoV-2 variants of concern as well as multiple coronaviruses.

3.
Viruses ; 14(9)2022 08 31.
Article in English | MEDLINE | ID: covidwho-2006233

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused huge social and economic distress. Given its rapid spread and the lack of specific treatment options, SARS-CoV-2 needs to be inactivated according to strict biosafety measures during laboratory diagnostics and vaccine development. The inactivation method for SARS-CoV-2 affects research related to the natural virus and its immune activity as an antigen in vaccines. In this study, we used size exclusion chromatography, western blotting, ELISA, an electron microscope, dynamic light scattering, circular dichroism, and surface plasmon resonance to evaluate the effects of four different chemical inactivation methods on the physical and biochemical characterization of SARS-CoV-2. Formaldehyde and ß-propiolactone (BPL) treatment can completely inactivate the virus and have no significant effects on the morphology of the virus. None of the four tested inactivation methods affected the secondary structure of the virus, including the α-helix, antiparallel ß-sheet, parallel ß-sheet, ß-turn, and random coil. However, formaldehyde and long-term BPL treatment (48 h) resulted in decreased viral S protein content and increased viral particle aggregation, respectively. The BPL treatment for 24 h can completely inactivate SARS-CoV-2 with the maximum retention of the morphology, physical properties, and the biochemical properties of the potential antigens of the virus. In summary, we have established a characterization system for the comprehensive evaluation of virus inactivation technology, which has important guiding significance for the development of vaccines against SARS-CoV-2 variants and research on natural SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Formaldehyde , Humans , Propiolactone/pharmacology , Vaccines, Inactivated
4.
Cell Res ; 31(7): 732-741, 2021 07.
Article in English | MEDLINE | ID: covidwho-1237995

ABSTRACT

SARS-CoV-2 variants could induce immune escape by mutations on the receptor-binding domain (RBD) and N-terminal domain (NTD). Here we report the humoral immune response to circulating SARS-CoV-2 variants, such as 501Y.V2 (B.1.351), of the plasma and neutralizing antibodies (NAbs) elicited by CoronaVac (inactivated vaccine), ZF2001 (RBD-subunit vaccine) and natural infection. Among 86 potent NAbs identified by high-throughput single-cell VDJ sequencing of peripheral blood mononuclear cells from vaccinees and convalescents, near half anti-RBD NAbs showed major neutralization reductions against the K417N/E484K/N501Y mutation combination, with E484K being the dominant cause. VH3-53/VH3-66 recurrent antibodies respond differently to RBD variants, and K417N compromises the majority of neutralizing activity through reduced polar contacts with complementarity determining regions. In contrast, the 242-244 deletion (242-244Δ) would abolish most neutralization activity of anti-NTD NAbs by interrupting the conformation of NTD antigenic supersite, indicating a much less diversity of anti-NTD NAbs than anti-RBD NAbs. Plasma of convalescents and CoronaVac vaccinees displayed comparable neutralization reductions against pseudo- and authentic 501Y.V2 variants, mainly caused by E484K/N501Y and 242-244Δ, with the effects being additive. Importantly, RBD-subunit vaccinees exhibit markedly higher tolerance to 501Y.V2 than convalescents, since the elicited anti-RBD NAbs display a high diversity and are unaffected by NTD mutations. Moreover, an extended gap between the third and second doses of ZF2001 leads to better neutralizing activity and tolerance to 501Y.V2 than the standard three-dose administration. Together, these results suggest that the deployment of RBD-vaccines, through a third-dose boost, may be ideal for combating SARS-CoV-2 variants when necessary, especially for those carrying mutations that disrupt the NTD supersite.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/pharmacology , COVID-19/immunology , COVID-19/prevention & control , Immunity, Humoral , SARS-CoV-2/immunology , Vaccines, Inactivated/pharmacology , Animals , Antibodies, Neutralizing/blood , COVID-19/blood , COVID-19 Vaccines/immunology , Cell Line , HEK293 Cells , Humans , Models, Molecular , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Inactivated/immunology , Vaccines, Subunit/immunology , Vaccines, Subunit/pharmacology
5.
Med Sci Monit ; 26: e928861, 2020 Dec 14.
Article in English | MEDLINE | ID: covidwho-976582

ABSTRACT

BACKGROUND Rhinovirus (RV) is the most common pathogen involved in asthma, and COVID-19, caused by SARS-COV-2, may be more severe in asthma patients. Here, we applied integrated bioinformatics to identify potential key genes and cytokine pathways after RV infection in asthma, and analyzed changes in angiotensin-converting enzyme 2 (ACE2), the cellular receptor of SARS-COV-2. MATERIAL AND METHODS The gene expression profile dataset GSE149273 was downloaded from NCBI-GEO, which included 90 samples of non-infected, RVA, and RVC. Differentially expressed genes (DEGs) were identified using t tests in the limma R package, and subsequently investigated by GO, KEGG, and DO analysis. Moreover, the expression of ACE2 and the proportion of immune cells were further analyzed to determine the effects of RV on cytokines. RESULTS A total of 555 DEGs of RVA and 421 of RVC were identified. There were 415 DEGs in RVA and RVC, of which 406 were upregulated and 9 were downregulated. The functional enrichment analysis showed that most DEGs were obviously enriched in cytokines, and were mainly enriched in "influenza" and "hepatitis C, chronic". In addition, the expression of ACE2 increased significantly and the proportion of immune cytokines significantly changed after RV infection. Our results suggest that RV can activate the cytokine pathway associated with COVID-19 by increasing ACE2. CONCLUSIONS The DEGs and related cytokine pathways after asthma RV infection identified using integrated bioinformatics in this study elucidate the potential link between RV and COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Asthma/immunology , COVID-19/immunology , Cytokines/metabolism , Picornaviridae Infections/immunology , Protein Interaction Maps/genetics , Asthma/complications , COVID-19/genetics , COVID-19/virology , Computational Biology , Datasets as Topic , Gene Expression Profiling , Gene Expression Regulation/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Picornaviridae Infections/genetics , Protein Interaction Maps/immunology , Rhinovirus/immunology , SARS-CoV-2/immunology , Signal Transduction/genetics , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL